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Abstract 

Over one million medical research publications are added to PubMed every year, presenting an 
ever-increasing challenge to clinicians in finding the publications that are most relevant to their 
research or practice. At present, PubMed’s search does not provide tools to search clinical trial 
articles for their target population groups, so a time-consuming manual review is required.  
 
PubMiner, a novel open-source interactive search tool, solves this problem by augmenting 
PubMed search results on randomized clinical trials with extracted demographic data 
(sentences and tables containing demographic data). It leverages text mining and machine 
learning approaches to extract clinical trial participants’ demographic data from the articles 
freely available in PubMed Central, an archive of biomedical and life sciences journal literature. 
New articles are processed and their related demographic data is stored in a database so that 
PubMiner can integrate the demographics with PubMed search results on request. The interface 
significantly reduces the time that clinicians spend searching for and reviewing demographic 
data on relevant clinical trial articles. PubMiner can guide both patient stratification for future 
trials and help clinicians provide the most personalized treatments possible. 

 
Keywords​: PubMed, PMC, Table Mining, Text Mining, NLP 
 
[​Submission​: primary journal - Journal of the American Medical Informatics Association, 
alternate - International Journal of Medical Informatics] 

Introduction 
 
PubMed is a publicly available search engine used to access the MEDLINE (Medical Literature 
Analysis and Retrieval System Online) database of articles as well as other various sources on 
biomedical topics. Currently there are over 28 million records indexed to search through 
PubMed. Many of these records contain links to full text articles, some of which are freely 
available in PubMed Central (PMC), an archive with publicly available full-text articles. For some 
medical researchers, this is often the primary resource leveraged to find literature relevant to 
their current research topic.  
 
A key type of article describes a clinical trial. These publications are the result of experimental 
clinical research designed to answer specific questions about a treatment or intervention (eg., 
vaccines, dietary choices, medical devices, etc.). These sorts of clinical trials are conducted on 
volunteers, starting with smaller pilot studies and progressively expanding to larger comparative 
studies.  
 
With the general advancement of medical research and the ever increasing focus on 
personalized medicine, a growing focus of researchers is to find clinical trials that include 
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patients with a similar profile to their demographic segment of interest. PubMed search 
currently includes some advanced features, such as Medical Subject Heading (MeSH) term 
tagging, which are a curated set of descriptors that are arranged in a hierarchical structure, in 
addition to standard functions like  boolean operators, synonyms searching, and other 
search-enhancing functionality. However, there is currently no facility for searching for specific 
demographics within articles. 

 
PubMiner is a tool that aims to add demographic-focused search capabilities to the current 
PubMed search function. PubMiner consists of (1) a process through which clinical trial articles’ 
text is processed in order to extract both sentences and tables containing demographic 
information describing the volunteers/patients in the trial, and (2) a web application through 
which users can submit PubMed search queries and retrieve enhanced results that will include 
the extracted demographic sentences and tables. 
 
The rest of this paper is structured with the following sections: Literature Review will discuss 
work that has been done that is relevant to both the identification of clinical trial articles as well 
as the text mining of those articles, Table Mining and Sentence Mining will discuss our methods 
for extracting tables and sentences from articles, and Results and Future Work will discuss the 
results of these methods as well as what future work can be done to improve and further this 
work. 

Literature Review  

The idea of enhancing PubMed searches is not a new one. A study conducted almost a decade 
ago [Lu 2011] found 28 various PubMed-derived systems providing features ranging from 
enhanced ranking search; clustering into topics; extraction and displaying semantics; and 
improvements to the interface and retrieval experience. Techniques for text mining and table 
mining of the full-text content of scientific articles have been the subject of a broad body of 
research. Additionally, the articles in PubMed have been used for research into clustering, 
classification, extraction of semantic structures and relationships, and the detection of tables 
and their structure. 
  
In an earlier research paper on full-text data mining of PubMed [Xu, Garten 2006], text 
classification was applied to separate the abstracts of randomized clinical trials into five 
sections: Background, Objective, Methods, Results, Conclusions. A Hidden Markov Model was 
used to extract the specific sentences containing demographic information. 
  
Statistical analysis methods can be applied to perform sentence similarity analysis. Research in 
this vein has been conducted on the similarity of short sentence from PubMed articles [Li, 
McLean 2006]. In this research, semantic similarity of two sentences was calculated using 
information from a structured lexical database and from corpus statistics. 
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A major challenge in full-text data mining is to extract the relationship from the context. The 
techniques winning the highest F1 score in the 2010 i2b2 Challenge have been disclosed for the 
relation-extraction task [Rink, Harabagiu 2011]. They indicate the extreme importance of lexical 
and contextual features on relation extraction from medical texts. 
  
A hybrid approach has been used to implement a method to discover, download, and extract 
context automatically [Tchouaa, Chard 2016]. In this research, during the extraction period, 
semi-experts helped to extract specific scientific facts. 
  
Extensive studies have been conducted on machine comprehension, from answer-generation 
for comprehension [Tan, Wei, 2017] to solving math word problems [Wang, et al. 2017]. These 
efforts may be transferred to other areas; however, the lack of annotated training data has 
typically limited their application to PubMed data. An alternative has been suggested [Ardehaly, 
Culotta, 2017]: introducing a deep neural network to learn the Label Proportion (LLP) setting. 
Their training set contained bags of unlabeled instances associated with a label distribution for 
the bags. 
  
Tables are a fundamental means of presenting data and reporting results, and are therefore 
commonly used in scientific articles. The information stored in tables is typically 
semi-structured, with few rigid rules and thus various models have been applied to tables, 
including lists, grids, trees, hierarchies and graphs. According to Hurst, the table mining process 
consists of four steps: table detection, in which existing tables are identified within a document; 
functional analysis, which is the detection and marking of functional areas of tables (e.g. 
headers, stubs, cells); structural analysis, which determines the relationship between cells; and 
semantic analysis, which determines the meaning of data. One conceptual approach is to 
segregate  tables into five key components: graphical, physical, functional, structural, and 
semantic,  [Hurst 2000].  
  
Decision Tree and SVM have been used to detect tables [Hu, Wang 2002]. A conditional random 
forest model has been employed to extract data from tables and suggested better results 
compared with that from Hidden Markov Model [Pinto, McCallum 2003]. 
  
Spanned rows and columns are a big challenge for effective table mining. Using attribute value 
pairs on standardized tables [Sale, Chawan, 2012] gave decent results. 
  
Since some tables are scanned, extracting data from the tables in the scanned document has 
also been  explored [Stadermann, Symons, 2013].  
  
A very comprehensive study of mining tables in PubMed was conducted by Nikola Milošević for 
his PhD thesis [Milošević 2017]. He studied the methodology and produced a software 
implementation to extract some information from the tables in PubMed [Milošević, 2016, 2017]. 
In his research, the four steps were studied and implemented on selected files. 
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An attractive research on using deep learning to understand the semantic structures of tables 
was conducted by Kyosuke Nishida [Nishida, Sadamitsu 2017]. In this research, a deep learning 
network consisting a RNN layer, a CNN layer, and a classifier was used. The RNN encoded the 
sequence of tokens for each cell to a 3D image data, and the CNN decoded this image to 
capture semantic features. In the end, the classifier gave the type of the table. 
  
Some attempts to combine the full-text mining and table mining have also been conducted. In 
[Govindaraju, Zhang 2013] the F1 score, which is a measure of accuracy that takes both the 
ability to correctly identify and the percentage of correct identifications, was doubled in a model 
with joint probabilistic inference combining tabular and context analysis together. Another tool 
that can be used for general dark data mining, regardless of context, table, figure, etc., is 
DeepDive [Zhang, Shin 2017]. 

Identifying Randomized Clinical Trials 

Narrowing PubMed search to Randomized Clinical Trials (RCT) 

RCTs are of high interest to medical researchers. While there is a PubMed tool to identify types 
of “Clinical Queries”, this service does not constitute a filtering mechanism, and does not yield a 
full set of RCT articles. This is due to both RCTs being a subset of what falls into the ‘Clinical 
Queries’ category and inherently inaccurate tagging. Moreover, there is a Clinical Trial 
publication type in PubMed, yet this cannot be used to obtain a definitive set of articles either 
since not all RCTs have been indexed with it. Using this Publication Type would yield a higher 
precision for the search, by eliminating many non-RCTS, but it would also risk not including 
RCTs of interest. Another possible alternative would be to use the Cochrane ​CENTRAL​ database 
of RCT reports to perform a simple search, as in​ [Royle, Milne 200​3] and ​[Royle, Waugh 200​5]. 
But while this database makes substantial progress in classifying RCTs, and could improve the 
specificity of the search, as with the search by publication type, not all RCTs have been 
classified. 
 
The first step in identifying the broad corpus of PubMed articles with the highest likelihood of 
finding RCTs is to provide a refined set of search filter terms to the PubMed E-utilities API 
[Entrez Programming Utilities Help]. In a comparative study of 38 search terms [McGibbon et al. 
2009] it was found that simply using ​randomized+controlled+trial[pt]​ yielded a 
sensitivity of 93.7% on Medline searches. In our work, an emphasis was placed on sensitivity, 
which is the ability to detect RCTs, i.e. a goal of the most number of true positives rather than 
the least number of false positives. This was because subsequent Table and Sentence Mining 
would occur later in the process and would help to ​de facto ​identify RCT articles. Additional 
search terms were added with the aim of improving precision, which is the percentage of 
predictions that are correctly identified as RCTs, while maintaining high sensitivity. Figure 1 
contains the terms used through the E-utilities API (eutils) to identify the PMIDs of RCTs to be 
used as the broad corpus of articles. 
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((randomized+controlled+trial[pt])+OR+(controlled+clinical+trial[pt])
+OR+(randomized[tiab]+OR+randomised[tiab])+OR+(placebo[tiab])+OR+(dru
g+therapy[sh])+OR+(randomly[tiab])+OR+(trial[tiab])+OR+(groups[tiab])
)+NOT+(animals[mh]+NOT+humans[mh]) 
 

Figure 1. Randomized control trial filter 

 
The terms have been referred to as the Cochrane Highly Sensitive Search Strategies [the 
Cochrane Work website] for identifying randomized trials in Medline, but are extensible to 
PubMed searches. The query should exclude animal trials, which is of particular importance. Of 
note is that it does not use the MeSH terms for Publication Types of “Clinical Trial”, “Clinical 
Study” or “Clinical Trial, Phase X” , since many articles have not been indexed by these MeSH 
terms as not all the articles available in PubMed have been classified by Publication Type. 
Furthermore, filtering by Article Type is not possible in PubMed Central, which would indicate 
that many of the articles that were used to populate our database are not, in fact, indexed. The 
search terms that were used have also been proposed as an optimal search strategy in 
[Dickerson et al. 1994] and [Glanville et al. 2006]. 
 
From this broad corpus, further refinement is performed to narrow down to target articles where 
the token stem appears in the title or abstract of the article. This step would improve the 
sensitivity of our process. That is, non-RCTs would be better identified as such. A regular 
expression (regex) parser is used to identify these articles for which the list of PMIDs is saved 
into a database.  

Matching RCTs to the articles in the PMC Open Access subset 

The list of PMIDs for the queried RCTs must match the PMCIDs of the articles in the Open 
Access (OA) Subset because only the full-text OA articles are used. This OA Subset is part of the 
total collection of articles in PMC but it allows more liberal redistribution and reuse than a 
traditional copyrighted work and the full-text of the articles is made available under a Creative 
Commons or similar license.  
 
Once the PMIDs were matched to their OA PMCIDs, the resulting subset will be the target 
corpus of the demographic information mining effort. Only files that are in XML format were 
considered; while the articles are also available in text files, these were not considered due to a 
reliance on XML tagging. To construct our baseline database, this process reduces the 3.67 
million search-returned articles to yield a subset of 301,659 articles in the target corpus. 
 

9 



Article Formats 

The XML files have a hybrid structure composed of XML for the text content and HTML for the 
table content.  In both PubMed and Medline, the XML elements and their attributes have been 
defined in a Document Type Definition (DTD), which establishes a standard for the document 
structure and allowable XML elements/tags. The latest version is  pubmed_180101.dtd (as at 
01/01/18). Figure 2 shows an example of the top elements from the PMC article with PMC 
ID3202247: 
 
 

 

Figure 2. PubMed Central sample XML file. 

Document Mining Pipeline 

The text mining and document search components comprise PubMiner’s document mining 
pipeline. To understand how PubMiner works, it is useful to understand how data moves 
through the system. PubMiner runs a scheduled process to identify documents for 
demographics mining by using the NCBI e-utilities APIs. Once the documents of interest have 
been identified, they are downloaded and fed into the document-mining processes which pulls 
out sentences and tables containing demographic information. This demographic data is 
persisted to a data store, which the PubMiner web application leverages to enrich standard user 
searches of PMC/PubMed with demographic data. The data flow diagram in figure 8, below, 
illustrates this process. 
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Figure 8. Document mining pipeline 

 
Table Mining 

Table Structure 

For RCTs, demographic information pertaining to trial participants and the randomized groups is 
embedded in HTML tables within the XML encoding of the article. An example of this is shown 
in figure 3. This particular example illustrates where demographic information is found within 
the structured HTML elements of the table itself, but also, in this specific case, in the <caption> 
of the table which includes the number of participants. While the descriptive measures of trial 
demographics are often found within the first table of the article, most often called “Table 1”, 
there is no standard, or even common structure for these tables. 
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Figure 3. Sample of demographic table information in article XML 

 
As shown in figure 3, the XML encoding for the article contains a <table-wrap> tag with an id 
attribute which identifies each table within the document. Generally the id attributes of multiple 
tables in the document are sequentially ordered, e.g. as "T1", "T2",...  However, there is no 
standard for these id attributes, and it is possible to have such attributes as 'TB1', or some 
journal-specific identifier, such as "pone-0093540-t001'".   
 
The <table-wrap> element generally has two children: a <label> element preceding a <table> 
element. The <label> that is of most interest to us would be "Table 1", since this is the table that 
typically contains demographic information. However, there is no standard labelling convention 
and this <label> element can also be "Table1", "Tab. 1", "TABLE I", or one of many other 
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variations. The most common is "Table 1", but since selecting on this <label> was not doable, all 
variations were included.  
 
Beyond these few aspects, there is no standard structure to the tables. Each table adheres to 
the HTML standard and the structural elements are encoded using HTML tags. However, there 
is no standard as to the layout/presentation of tables, meaning that header rows can be simple 
or multi-row, and that the row stubs (e.g. "Mean age (years) (SD)")  can represent single rows or 
can be super-rows for multi-row variants. The range of tables layouts, from simple lists to 
complex formats (with for example, spanning super rows and nested cells), makes it very 
difficult to consistently extract the various relationships from table cells. It is in fact easy to 
identify cells which contain demographic terms, such as “age”, “adults”, “infants”, “sex”, 
“gender”, “male”, “female”, “Hispanic”, “Caucasian”, “African-American”, etc. In contrast, it is 
difficult to determine the roles of cells that are siblings or descendants of such terms. This 
renders the process of extraction of the numerical information attached to these terms  (mean 
age in years, standard deviation, percentage share, etc.) a very complex problem. 

Table Truncation 

Following the four-step table mining process elucidated by Hurst [Hurst 2000], a focus was 
placed on only on the first two steps:​ table detection​ and ​functional analysis​, with the third, 
structural analysis​, being limited to determining the point at which to truncate the table.  For 
detection, the <table-wrap> XML tag was relied upon, and including any variation of "Table 1" as 
a <label> element. For this set of tables, standard form of functional analysis was performed to 
determine demographic components. Since other tables may also contain demographics, tables 
with other <label> elements (e.g. "Table 2", "Table S1") were considered; however for these 
tables a more in-depth form of functional analysis was performed to determine the role of the 
demographic terms. This is done to avoid inclusion of tables which refer to demographics, for 
example "age", but do not in fact provide the summary demographic information for the trial. In 
construction of the baseline database, the table detection brings the subset of 296,400 articles 
in the target corpus down to 176,200 articles that contain some (any) type of table. 
 
To perform the functional analysis, the lxml library was used to create an element tree (​etree​), 
and from the etree a search for "age", "sex", "gender", "race" and "ethnicity" using complex 
regular expression rules was performed. Because "race" and "ethnicity" may not be included as 
row headings, and a search through the etree for sibling elements in the <table> that contain 
specific race nomenclatures ("white", "African-American", "Asian", etc.) or common ethnicity 
groupings ("Hispanic", "Indian") was conducted. This simple form of functional analysis, yields a 
subset of 27,800 tables that contain "age" and 2,400 tables that contain both "age" and either 
"sex" or "gender". A slightly more complex rule is used for non-Table 1 tables, where the 
presence of the demographic terms must be in the row stub and must only appear once. 
 
The last step is the structural analysis, in which tables were truncated using the HTML encoding 
of the rows. Using lxml, etree was exploited to count the number of rows including demographic 
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terms, and then for each column, only include that number of row siblings, truncating all 
subsequent siblings. The resulting HTML tree is written to a string in the database. 

Sentence Mining 

The overall process of taking in XML files and extracting the sentences that are most likely to 
contain demographic information is illustrated below. The process begins with taking in 
XML-formatted articles and converting them into a usable format. For this analysis this means 
tokenization of sentences. Various features are then extracted from these sentences to create a 
model that will predict which sentences are most likely to contain demographic information 
about participants in clinical trials. 

Sentence Mining Pipeline 

 

Figure 4. Sentence mining pipeline 
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Converting Text to Tokenized Sentences 

Two tags from these XML files that are of particular interest are the <abstract> and <body> 
tags. These PMC XML files are of a standard format so an open source PMC parser [Shashank, 
Agarwal] was used to parse and store these nested XML tags in a Java object. 
 
The Java generalutils' SentenceTokenizer was then used to split the text of the abstract and 
article text body into a joint collection of sentence strings for future processing. Note that other 
sentence tokenizer tools could be chosen to break paragraphs into sentences. The generalutils' 
package SentenceTokenizer worked well with reasonable speeds. 
 
Each word in each sentence was normalized into lemmas, which are groups of the same form 
of a word (eg., amusement, amusing, and amused), to be used as features of the heuristics and 
machine learning models. The Stanford NLP toolkits [Manning et. al 2014] were used to obtain 
lemmas from sentences. 

Initial Sentence Processing  

Since analyzing the structure of sentence strings using text mining tools is a computation-heavy 
job with each article having 200 sentences on average, an initial processing step was conducted 
using hits of some keywords to do a coarse filtering for demographic sentences. These 
keywords are "patient", "age", "aged", "male", "female", "subject", "individual", "woman", "man", 
"women", "men" and "people". "women" and "men" are also included because Stanford NLP 
toolkit's lemmatization process sometimes doesn't reduce special plural forms such as 
"women" and "men" into their singular forms, "woman" and "man". This keyword set can likely be 
expanded for further model tuning. 

Feature Engineering 

With sentences prepared in a format ready for further analysis, the focus turns to feature 
engineering. The following is the list of features used to create the model: 

● Part-of-speech tags obtained from Stanford NLP API, especially [numeric modifier, noun] 
bigrams 

● Count of numeric modifier in the article instead of in the sentence 
● Bag of words based on lemmas of the sentence 
● Sentence's section name 

Statistical Model Feature Weight Tuning 

Feature weights are assigned to features identified in the previous section to calculate 
demographic scores of a sentence by summing them. A higher demographic score means the 
sentence is more likely to contain demographic information than a sentence having a lower 
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score in the article. These scores are used to select which sentences will be displayed in the 
web application. 

Results  

A web application was made publically available at ​www.pubminer.org​. Figure 5 and 6 show 
sample results from the web application, including both table and sentence extracts. 
 
At present 301,255 articles were processed for sentence and table extraction. The results of the 
processing were persisted in a database. 
 
Our sentence mining work was compared with a similar tool(​http://www.robotreviewer.net​)'s 
population sentence annotations. Our sentence mining results are consistently better than 
RobotReviewer's by using RobotReviewer's 3 demo's articles from their home page (26 articles 
in total). This is the comparison spreadsheet: ​https://goo.gl/5WrUKo​. 
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Figure 5. UI displaying table 1 extract 
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Figure 6. UI displaying demographic sentence  
 

Future Work 

First, a key improvement to the overall system would be to make enhancements to the 
algorithm for finding the most relevant sentences, whether that be collecting additional data for 
use in training or further tuning of the model. The current system can be improved both in terms 
of accuracy in the results and, potentially, the ranking of the results. 
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An additional possible step would involve implementing a “verification mode” in the web 
application. The idea here is that users could provide feedback on sentences and articles and 
whether they are correctly identified and labeled. In essence, this would be crowdsourcing a 
training data set. This would involve users submitting feedback on suggested sentences to 
indicate whether they actually contain relevant demographic information. Feedback would then 
be fed into the system for further model refinement. 
 
From related work on the classification of articles into RCTs and non-RCTs, next steps would 
include integrating the results of this RCT classification into the PubMiner application as an 
additional icon, along with that for sentences and tables. The icon would give the percentage 
probability of the article being a RCT. In addition, a threshold probability (e.g. 50%) could be 
used to cull suspected non-RCTs from the database, so that users are not given results for 
articles that are not RCTs. 
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Abstract 

       
Randomized clinical trials (RCTs) are imperative to the progress of medical research, with 
thousands being published on an annual basis. Currently, the number of published RCTs is over 
one million, and half of those RCTs are found in PubMed, a freely accessible search engine 
primarily accessing the MEDLINE database of biomedical literature. While these RCTs are freely 
available to the public, there is currently no straightforward way to identify RCTs amongst the 
multitude of article types in the database. Identifying RCTs efficiently presents itself as an 
ongoing challenge for medical researchers. 
 
In this paper, a new deep learning model is trained and selected from several models designed 
for identifying and classifying RCTs. Unlike other related work which use the abstract portions 
of the papers only, this paper is based on experiments using both the full text documents and 
their abstracts. The selected deep learning model combines a long short-term memory (LSTM ) 
model and one-dimension convolution together to process the vectors generated from 
Doc2Vec. This model can classify articles with a relatively high accuracy and low computational 
requirement.  
 
Keywords:​ PubMed, PMC, Deep Learning, Topic Classification, Document Classification, 
Randomized Clinical Trial Classification 
 
[​Submission​: primary journal - Bioinformatics, alternate - BioData Mining] 
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Introduction 

Background 

Randomized clinical trials are medical studies in which participants are randomly allocated to 
two or more groups that will receive different interventions, with one group being the classic 
“control” group. This is done in order to properly compare the effects of interventions and is of 
utmost importance in medical research. RCTs contain very helpful information regarding the 
potential treatments for certain disease for both medical researchers and practitioners. At 
present, more than one million RCTs have been published and approximately half of them are 
made freely available in a service called PubMed, a freely accessible search engine primarily 
accessing the MEDLINE database of biomedical literature. While this literature is available to the 
public, there is currently no way to identify or filter to RCTs for the interested medical researcher 
or practitioner. 

Literature Review 

Relatively few studies have been conducted on how to classify medical literature into either an 
RCTs of other type of document. Nonetheless, the following is a discussion of relevant work 
that has been conducted in the area. 
 
An RCT dataset for sequential sentence classification was created [Dernoncourt, Franck 2017] 
to indicate the role of each sentences in an RCT abstract.  

 
Machine learning was applied to classify RCTs among other medical documents [Marshal et al. 
2017]. The result indicates that using a support vector machine (SVM) and a convolutional 
neural network (CNN) on abstracts can separate RCTs well from other medical documents. 
 
SVM and Associative Text Classification (ATC) are used to classify clinical trial reports 
[Sarioglu, Efsun 2013], and the result indicates that SVM performs better than ATC. 
 
From a more general perspective, RCT classification belongs to the work of topic classification. 
SVM and Naive Bayes are traditionally used in this task. Naive Bayes is well known for its speed 
and high accuracy for topic classification [Ting, S 2011]. 
 
However, Naive Bayes does not always mean the best solution. A comparison between Naive 
Bayes and SVM [Wang, Sida, 2012] indicates that Naive Bayes can give better result on snippets, 
while SVM outperform Naive Bayes on full lengh reviews. 
 
For long text classification, linear discriminant analysis (LDA) is used to do dimension reduction 
and SVM is used to do classification [Li, Kunlun 2011]. Moreover, LDA can also improve the 
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performance in datasets with high sparseness issue in short text topic classification [Chen, 
Qiuxing 2016]. 
 
Deep learning is also used to do paragraph classification. A growing body of recent research 
indicates that both CNN and LSTM can get a good score for paragraph classification. While a 
CNN runs significantly faster, an LSTM can give better results [Nho, Eugene 2016]. 
 
An effective tool to deal with sequence data is the LSTM model [Sepp Hochreiter, 1997]. This 
model can be seen as an upgraded recurrent neural network (RNN) model. It contains three 
gates: drop out, input, and output gate. An LSTM can transfer the information from a much 
earlier step in a sequence to other LSTM units. Therefore, this ‘memory’ helps to manage the 
vanishing gradient issue for the deep RNN.  
 
A bottleneck for training LSTMs is present in the downsizing of the sequence input. In order to 
address this bottleneck, one solution [Ng 2018] is to introduced a 1-D convolutional layer as an 
initial layer in the network, in order to downsize the vectors that will be inputs to subsequent 
gated recurrent layers (GRU). 
 
To generate the vectors of an article, the traditional approach is N-grams and TF-IDF. The 
hidden assumption of N-grams is it based on a Markov Model. TFIDF is the combination of the 
Terms’ frequency [Luhn, Hans Peter, 1957] and inverse document frequency[Spärck Jones 1972] 
to evaluate the importance of a word for a document in a set of corpus.  
 
There have also been more recent developments in vectorization by way of Word2Vec [Mikolov, 
Tomas 2013] and Doc2Vec [Mikolov, Tomas 2014], which are predictive models for learning 
word embeddings from raw text. 
 
Word2Vec uses skip-gram or a CBOW (continuous bag-of-words) to generate the word vectors, 
in order to capture the relationship between different words effectively. However, this algorithm 
has two limitations: first, the word order information is lost, and second, the word semantics 
cannot be kept either. In order to solve these limitation, Doc2Vec was developed in 2014, and 
can generate vectors containing more semantics and sequence information. 
 

Methodology 

 
The entire process of developing an RCT classification tool can be separated into four distinct                             
steps: fetching data, tokenization of sentences, vectorization of sentences, and finally                     
classification. These parts are illustrated in the figure below: 
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Figure 7. Classification is separated into four distinct steps 
 

 
 
 

Step 1: 

First a dataset composed of both labeled RCTs and non-RCTs is prepared for further 
processing. After combining the 171k labeled RCT/non-RCT labels from clinicaltrials.gov and 
the 1.7m open access files on the NCBI website, approximately 10k articles are identified as 
candidates for use in the dataset. Approximately 2,000 are non-RCTs and 8,000 are RCTs, 
making an unbalanced dataset. Although training a model using unbalanced sampling results in 
an F1 score of about 93%, further verification using real world data is desirable. 
 
Borrowing from related work that identified both tables and sentences from Pubmed articles 
[Pubminer 2018], additional articles with high likelihood of being non-RCTs were then added to 
produce a more balanced dataset containing 19,111 articles. These articles were split into 
training and testing sets for the training models. 
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Figure 8.  Summary of the construction of a dataset to be used to train models 
 

 
Step 2: 

Having a dataset or articles identified, a Python package, BeautifulSoup, was used to scrape the 
abstracts and full text from the set of 19,111 articles. Pre-processing to remove symbols and 
stop words was conducted prior to constructing the corpus on which models would be trained.  

 
 

 

Figure 9. Text processing was needed before any modelling could be conducted. 
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Step 3: 

With a corpus prepared, vectors were prepared using three vectorization tools: Doc2Vec, 
Word2Vec, and TFIDF. For Doc2Vec, generation of vectors was conducted using three different 
parameters for the sizes of the full text dataset: 256, 1024, and 3072. For Word2Vec, a 
pretrained RCT sentence vectors [Dernoncourt, Franck, 2017] was used. Among the models 
using vectorization, the best performance in terms of accuracy and F1 score is the Doc2Vec 
model.  
 
The fastest Doc2Vec tool comes from the gensim package, which uses fast mapping 
technology and parallel computation to speed the calculation to be even faster than other 
implementations that use graphics processing units (GPUs) for processing. However, it is still 
time and memory consuming to use the Doc2Vec algorithm for big vectors. Generating the 
Doc2Vec vectors with a size of 3072 takes about 12 hours occupying all the threads of two 
workstation-grade XEON processors and approximately 20GB of memory. Generating the 
Doc2Vec vectors with a size of 256 only takes about 1 hour and 10GB of memory using the 
same hardware. 
 
Different windows, epochs, and min_counts were also attempted for constructing the Doc2Vec 
vectors. During the experiments, it was found that even a vector size of 256 can generate the 
favorable results as long as other parameters were set appropriately. Setting a min_window of 1 
can help the Doc2Vec vectors capture information more sensitively while increasing the window 
of context length to 21 helps to preserve more syntax information. The epochs were set to 50 in 
the final solution. 
 
The Python sklearn package was used to test the term frequency–inverse document frequency 
(TF-IDF) for its convenience and efficient use as a pipeline solution. This combination also 
yields the best results when only using the abstract portions of the articles. The results validate 
the findings of Wang [Wang, Sida, 2012] that Naive Bayes can yield better results on snippets. 
 
A pre-trained RCT using Word2Vec vectors was also used. The vector size was wet to 200 and 
sequence sizes of 100 and 1000 were tested. Keras, a high-level neural network tool, was used 
to implement the LSTM model. This model did not outperform the model using Doc2Vec vectors 
in the experiments. One potential explanation may be that this vector was trained using 
sentences from the abstract portions of the articles only. Another possible reason is that the 
dataset is too small and there may be some overfitting of the model. 
 
However, after trying other simpler LSTM structures for the dataset similar results were 
obtained. In the end, the pre-trained RCT Word2Vec was not used. The hypothesis here is that 
losing the sequence and semantics information might be the root cause of the poorer 
performance.  
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Using an initial embedding layer substantially increases the size of the LSTM, requiring 
significantly longer training times for the network model. On one NVIDIA GTX1060 6G GPU it 
took approximately 4 hours to train the LSTM model to produce a final F1-score of 83% on the 
test set. 

Step 4: 

After extensive testing of different options, the final model selected was a Naives Bayes 
classifier, SVM and nine different deep learning networks using word or document vectors. 
Below are a few samples of the model structures. Full figures can be found in the Appendix. 
 
 
 

 

Figure 10.  
 
 
 
MXNET was the deep learning API package chosen to implement all the deep learning models 
except the LSTM, for which Keras was used. The reason is that MXNET is faster than other deep 
learning packages on a GPU machine, and its symbolic language is user-friendly. Models that 
were used in these experiments were SVM, along with two different deep neural networks 
combined with SVM, as well as the Inception CNN model with Batch Normalization. Both DNN 
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gives the similar result (F1 Score 84% to 85%). The simplest deep neural networks can be 
trained relatively fast, about 0.25 seconds per epoch (for 256 vector size), and these were 
trained for 300 epochs. The bigger DNN model is not slow either, about 0.38 seconds per epoch 
(for 256 vector size). However, the Inception CNN model with Batch Normalization did not 
provide superior performance, despite taking about 4.5 seconds per epochs to produce a 83% 
F1 score.  
 
Transfer learning was also attempted to use a pre-trained ResNet-50 and ResNet-152 model. 
These models result in no more than an 80% F1 score. One reason for this might be that the 
dataset is too small in terms of both vector size and article count for the Inception Batch 
Normalization and Res-Net models. Another reason might be that they are networks with 2-D 
convolutional layers which may not suit language processing and that a network architecture 
with a 1-D convolutional layer might fit better. 
 
 
The dimensions of the vectors generated by TF-IDF and Word2Vec can be very large. In testing, 
these were 1.8M and 200* 1000 sequences, respectively.  Therefore, it was key to investigate 
how to downsize the vectors in order to to effectively train the LSTM models. 
 
Inspired by the application of 1-D convolutional layers as the initial network layers to downsize 
the audio signals [Ng 2018], the below LSTM model was designed. 

 
 

 

Figure 11. Illustration of the LSTM network design 
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This model contains a 1-D convolutional layer, two LSTM layers, and the corresponding dropout, 
activation, and normalization layers. Benefitted from the 1-D convolutional layer, the LSTM units 
can be reduced remarkably. For instance, if using a 16x16 vector to the LSTM without the 1-D 
convolutional layer, the first layer of the LSTM contains 16 units with 512 dimension. After using 
the 1-D convolutional layer there was only 1 LSTM in both LSTM layers if filter size of the 1-D 
convolutional layer is set to 15.  

Results 
 

The full details of the various experiments can be found in the attachment.  
 
For the abstracts data, a Naive Bayes model was the best solution. It yields a F1-score of 81%. 
For full text data, a one-dimension convolution + LSTM is the winning solution, which yields 86% 
for precision, recall, and F1-Score.  
 
Doc2Vec helps to generate good vectors fed to this network. Instead of increasing the vector 
size, adjusting other hyperparameters such as window, min_count, and epoch can yield good 
results with fewer time a memory resource consumption. 
 
The 1-D convolutional layer is important with the long word sequences used. This was in order 
to reduce the dimensions of the vectors to use in an LSTM model and therefore to maintain 
performance while reducing both training time and resource needs. 

Future Work 

Due to a limited amount of time, our experiments do not cover the full range of combinations of 
both the deep network architectures and the methods to vectorize the text content. 
 
A new development of language process comes from deep learning sequential models with an 
attention component [Dzmitry Bahdanau, 2014]. Attention models were not investigated, 
however the impressive results of these models on text analysis problems, including document 
classification, lead us to consider this as the primary avenue for future work. 
 
Lastly, since the simple Naive Bayes classifiers had relatively superior performance, ensemble 
methods with Naive Bayes combined with sequential models or other non-Neural Network 
classifiers would be an promising and interesting topic to investigate further.  
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Appendix: 

1. Experiments Overview: 

           

1. Experiment on Abstracts only 

Vectorizer  Classifier  Precision  Recall  F1-Score 

TFIDF  Naive Bayes  82%  81%  81% 

DOC2VEC 
(size = 1024 
Window = 3 
Iter = 30 
Min Count =2) 

SVM  77%  77%  77% 

DNN+SVM  74%  74%  74% 

DDNN+SVM  75%  75%  75% 

Inception Batch Normalization  74%  74%  74% 

1dCNN + LSTM  78%  78%  78% 

 
 

           

2. Experiment on Full text without the 9k non-RCT from PUB Miner   

Over-Sampling  Vectorizer  Classifier  Precision  Recall  F1-Score 

No Over 
Sampling 

DOC2VEC 
(size = 1024 
Window = 3 
Iter = 30 
Min Count =2) 

1dCNN + LSTM  79%  84%  78% 

SMOTE 

SVM  80%  80%  80% 

DNN+SVM  93%  93%  93% 

DDNN+SVM  93%  93%  93% 

Inception Batch Normalization  94%  94%  94% 

1dCNN + LSTM  93%  93%  93% 
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3. All the follow experiments include the 9k non-RCT from PUB Miner   

Over-Sampling  Vectorizer  Classifier  Precision  Recall  F1-Score 

No Over 
Sampling 
 

DOC2VEC 
(size = 1024 
Window = 3 
Iter = 30 
Min Count =2) 

SVM  81%  81%  81% 

DNN+SVM  84%  84%  84% 

DDNN+SVM  83%  83%  83% 

Inception Batch Normalization  81%  81%  81% 

1dCNN + LSTM  86%  85%  85% 

 
 

           

4. Modify Doc2vec hyper parameters   

Over-Sampling  Vectorizer  Classifier  Precision  Recall  F1-Score 

No Over Sampling 
 

DOC2VEC 
(size = 1024 
Window = 8 
Iter = 50 
Min Count =1) 

SVM  85%  83%  83% 

DNN+SVM  85%  85%  85% 

DDNN+SVM  84%  84%  84% 

Inception Batch Normalization  81%  81%  81% 

1dCNN + LSTM  85%  85%  85% 
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5. Increase Doc2vec vector size 

Over-Sampling  Vectorizer  Classifier  Precision  Recall  F1-Score 

No Over 
Sampling 
 

DOC2VEC 
(size = 3072 
Window = 21 
Iter = 50 
Min Count =2) 

SVM  85%  85%  85% 

DNN+SVM  85%  85%  85% 

DDNN+SVM  85%  85%  85% 

Inception Batch Normalization  81%  81%  81% 

1dCNN + LSTM  86%  85%  86% 

 
           

6. Implement Transfer Learning   

Over-Sampling  Vectorizer  Classifier  Precision  Recall  F1-Score 

No Over 
Sampling 

DOC2VEC (size = 
3072, 
Window = 21, Iter = 
50 
Min Count =2) 

Res 50  75%  75%  75% 

Res 152  75%  74%  75% 

 
 
 

           

7. Decrease Doc2vec vector size   

Over-Sampling  Vectorizer  Classifier  Precision  Recall  F1-Score 

No Over 
Sampling 
 

DOC2VEC 
(size = 256 
Window = 21 
Iter = 50 
Min Count =1) 

SVM  84%  84%  84% 

DNN+SVM  85%  84%  84% 

DDNN+SVM  85%  85%  85% 

Inception Batch Normalization  83%  83%  83% 

1dCNN + LSTM  86%  86%  86% 
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8. Use Pre-trained PMC Word2Vec vectors   

Over-Sampling  Vectorizer  Classifier  Precision  Recall  F1-Score 

No Over 
Sampling 

Pretrained PMC 
Word2Vec 
(size =200, 
Sequence = 
1000) 

1dCNN + LSTM  82%  82%  82% 

1dCNN  84%  83%  83% 

CNN (by Iain Marshall)  82%  82%  81% 

No Over 
Sampling 

Pretrained PMC 
Word2Vec 
(size =200, 
Sequence = 100) 

1dCNN + LSTM  79%  79%  79% 

1dCNN + LSTM Mid  81%  80%  80% 

1dCNN + LSTM Small  81%  81%  80% 

 
 
 
Figure 12. Experiment details 
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1. System Design 

Overview 

The PubMiner system consists of three logical components: one for identifying and 
downloading publications of interest, another that performs text mining and demographic data 
extraction on the downloaded publications, and, finally, a web service and user interface that 
deliver enriched PubMed queries by augmenting PubMed search results with the extracted 
demographic data stored by the data extraction process. 
 
These components are highlighted in figure 13, which provides a high-level view of how the 
PubMiner system relates to NCBI and PubMed Central. 
 

 

Figure 13. Relationship of PubMiner system to NCBI 

 

Document-Mining Architecture 

The document-mining architecture is implemented as loosely-coupled tasks that are tied into a 
workflow. Several AWS services are used to orchestrate and execute the workflow. 
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Figure 14. Document mining architecture 

 
Figure 14 illustrates the system architecture used for the document-mining pipeline. Reading 
from left to right, the pipeline maps closely to the data flow depicted in figure 13. AWS was 
chosen for these tasks given the rich set of platform tools that it provides as well as the ability 
to create workflows from disparate components. By using services such as AWS Lambda, we 
are able to focus on the core algorithmic aspects of extraction, getting the benefits of the 
platform’s capability and scalability out of the box. 
 
The detailed steps for running the document workflow are as follows: 

1. A scheduled CloudWatch event (every 24h) occurring at 6:00 GMT triggers an AWS 
Lambda function (GetPMCUpdatesFromCSV) to run Python code to process any new 
articles that satisfy the search using the RCT query string and that are available in PMC 
OA Subset. Only articles that have a Entrez publication date within the last 2 days are 
considered as new, which allows some overlap between daily searches. The first step in 
the process is to issue the pre-defined search query (see figure 1) to the eutils esearch 
API to get a list of PMIDs.  

2. All articles available in the Open Access subset, including the newest updates, are 
contained in a .csv file available on the NCBI FTP site. This file is downloaded and the 
list of PMIDs is intersected with the Open Access subset to get a list of the PMIDs and 
their corresponding PMCIDs. This list represents the newly published articles that should 
be processed. 
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3. The current date, the PMIDs and the PMCIDs (primary key) are written as an item to the 
dynamodb table “​demographics​”. The metadata item for demographics in the 
“​demographics_meta​” table is updated with the information from the search, and 
counters are reset to zero for downloads, number of tables extracted, and the number of 
sentences extracted. Both of these dynamodb tables have been configured with streams 
to trigger subsequent AWS Lambda functions. These first three steps are part of the 
same Lambda function and comprise Stage 1 of the process. 

4. Next, the AWS Lambda function for Document Download (DownloadPMC-OAFileToS3) 
polls the dynamodb stream from the ​demographics​ dynamodb table. The INSERT or 
MODIFY items in the stream will trigger the function, which, one by one, downloads the 
target articles from the PMC-OA website, uncompresses the file from tar.gz format and 
then uploads the .nxml file to the S3 bucket “​pubmedcentral_oa​”. The function also 
updates the statistics, by incrementing the counter ​items_downloaded​ in the 
demographics_meta​ dynamodb table. There is also a trigger action for the next Table 
Mining step. This step comprises Stage 2. 

5. The AWS Lambda function for the table truncation (TruncateTable) is triggered for each 
article .nxml file put to the S3 bucket “​pubmedcentral_oa​”. The function opens the .nxml 
file from S3, then extracts the relevant demographic information from the table and 
writes the resulting table as an HTML string to the table1 attribute of the article’s item in 
the ​demographics​ dynamodb table. It also increments the with_tables counter in the 
demographics_meta​ dynamodb table in order to update the statistics. 

6. An AWS Lambda function for sentence extraction (SentenceMinerOnEC2instance) polls 
the stream from the ​demographics_meta​ dynamodb table, waiting for the event that the 
number of articles put to S3 (​items_downloaded​) equals the number of new updates 
(​items_updated​). In this way, the end-of-stream event for the updates to the 
demographics​ dynamodb table is captured, such that we can be assured that the full set 
of article .nxml files have been uploaded to S3, necessary for the batch sentence 
extraction to execute. This threshold event triggers the function to launch a new EC2 
instance in order to perform the sentence extraction and write the output to the 
sentences attribute in the ​demographics​ dynamodb table. The function also increments 
the counter ​with_sentences​ in the ​demographics_meta​ dynamodb table, to maintain the 
statistics.  When the full set of updates has been processed, the instance signals task 
completion (by updating a file on S3) and then self-terminates. The steps 5 and 6 
comprise Stage 3 of the process. 

7. At the end of the process, the ​demographics​ dynamodb table has been updated with all 
the items for all articles in the update, including the attributes for extracted tables and 
sentences, where those exist. The ​demographics_meta​ dynamodb table has been 
updated to include statistics on the current number of items in the database, the number 
of updates, and download, and how many articles in the update have sentences and 
tables. 
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Data Model 

The PubMiner application relies on a simple DynamoDB table as the data persistence solution. 
This table will contain PMCIDs and the related extracted information. 
 
This choice of a DynamoDB database was primarily made for ease of use by other AWS 
elements in this project. In particular, it will integrate smoothly with an AWS Lambda function 
which will be the process by which updates are made to the database. 
 
Due to DynamoDB’s schema-less table design and flexibility in adding data elements to existing 
items, the table structure is as follows: 

 

 

Demographics Table Structure 
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Demographics Meta Table Structure 

 
 

Figure 15. DynamoDB tables demographics and demographics_meta definition 

 
Here we define that each item of the ​demographics table has a primary hash key PMCID that is                                   
a string object. Each article item will have a set of associates attributes, including PMID,                             
date_processed, title, a set of sentences, and an html version of a table. 
 
An additional ​demographics_meta table describes the results of each batch processing pipeline                       
so that the web application can display this information to the user. 

Example Item Structure: 

Each item stores the demographic sentences, additional information about sentences, the 
extracted HTML of the relevant section of Table 1 when available, and other metadata such as 
the date the article was processed. Note that the sentences are stored in order from most to 
least likely to contain demographic information. These are displayed in the web application first 
grouped by section name and then ordered within each section. Figure 16, below, shows a 
sample item: 
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Sample DynamoDB Object 
 

 

Figure 16. Example database item 
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PubMiner Network Architecture 

PubMiner resides on AWS infrastructure, and while the DynamoDB databases and AWS Lambda                         
functions are serverless, the two Web Server instances, and the Sentence Miner instance are                           
within a VPC tailored for the application, and an Elastic Load Balancer and Amazon Route 53                               
domain (pubminer.org) complete the network architecture. The complete network architecture                   
is illustrated in figure 17. 
 

 

Figure 17. PubMiner network architecture on AWS 
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The VPC has two public subnets, and one private subnet. The former share a web security group 
with open HTTP access, and the latter has a scaled back security group with only SSH access 
(through a NAT gateway). PubMinerPublicSubnet1 and PubMinerPrivateSubnet1 are both in the 
us-east-1a Availability Zone, and PubMinerPublicSubnet2 is in the us-east-1b Availability Zone.  
Users are routed through the Elastic Load Balancer PubMinerLB to one of the WebServer 
instances, each of which resides in its own public subnet. While internet traffic from the Web 
Server instances is routed through a public route table, for the private subnet 
PubMinerPrivateSubnet1, traffic is constrained to a private route table that routes through the 
VPC NAT Gateway located in PubMinerPublicSubnet1. Note, that the Sentence Miner instance is 
not permanent, it launches on demand.   
 
The other AWS services used are not located in the VPC. They include two S3 buckets 
(pubmedcentral_oa and pubminer_upload), the Dynamodb tables (demographics and 
demographics_meta), the AWS Lambda functions created by CloudFormation, as well as the 
logs and Lambda function triggers in Amazon CloudWatch. 

 
Web Application 
The web application is written as a three-tiered architecture with a front end, web service, and 
database. 

Application Architecture And Technology 

The web application architecture is illustrated alongside the overall application architecture 
along with the core technologies for each component in figure 18. 
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Figure 18. PubMiner web application architecture and technologies 

 
 
The web application component of PubMiner is written in JavaScript using the NodeJS runtime. 
Several factors contributed to this choice of technology. Chief among them was the fact that 
most team members had some level of experience with JavaScript. This meant that most team 
members could contribute to development and that the team could avoid a situation where a 
sole expert might become a bottleneck during development. The particular problem domain of 
the PubMiner’s web application deals with orchestrating calls to various service endpoints and 
transforming and combining that data for presentation to the UI. This use case lends itself very 
well to a dynamically-typed language that natively supports JSON. The choice of language and 
runtime allowed developers to forego much of the effort normally required to encode and 
decode data in statically-typed contexts, and the large community around NodeJS made the 
process of finding answers to the issues encountered during development easier. 

Software Architecture 

The web application comprises three core of software services. Two of these services represent 
the data sources for the system. The PubMedService provides high-level APIs for calling NCBI’s 
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e-utilties APIs and standardizing their response formats. The DemographicService wraps 
access to PubMiner’s own demographic data stored in AWS DynamoDB. These two services are 
independent and have no knowledge of each other. The third service, the PubMinerService, 
furnishes a set of operations that map almost directly to HTTP endpoints exposed by the 
application. The PubMinerService orchestrates calls to the lower level services to provide 
fundamental application features like searching and showing search results. Figure 19 
highlights the web application’s software architecture. 
 
 

 

Figure 19. PubMiner web application UML diagram 

 

Data Enrichment Process 

PubMiner provides the enriched search results to users by combining data from two different 
data sources. PubMiner first performs a series of search, filter, and fetch operations using the 
NCBI e-utilities APIs. The result of these calls is an initial list of summary results that are likely 
to be in PubMiner’s database since the search terms are enriched with filters (see figure 1) and 
limited to open-access articles. Once PubMiner has received the first set of results from NCBI, it 
pulls the PMCIDs from the response and queries the demographic database for matching 
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records. The results from the demographic database, which include sentences and possibly 
table data, are merged with the summary results received from NCBI. Those results are then 
returned to the UI. Figure 20 illustrates this process in detail. 
 
 

 

Figure 20. Data enrichment process sequence diagram 

 

Front End 

The PubMiner user interface is straightforward. The user is presented with an input field where 
search terms may be entered. When the user presses the search button, search results are 
returned and rendered on the page.  Additional information, including demographic details, can 
be viewed by expanding a result row. Individual result rows can be checked to build a list of 
items for export to a CSV file. The initial result display contains 20 items, and additional items 
can be loaded. 
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Figure 21.  PubMiner Search Results Page 

Search 

Values entered in the search terms field are combined with a filter designed to find only 
randomized clinical trials with human participants. Using NCBI’s E-utilities API, the PubMed 
database is searched and a result set consisting of PubMed article ids is stored on the NCBI 
server.  The search result provides web environment (webenv) and query key values that can be 
used to access the stored results and provide the stored article ids as input to other E-utilities. 
We implemented a search query string to filter for clinical trials after reviewing literature by 
Glanville, et al  the Cochrane Work website .  The filter we chose to use is: 1 2

 
((randomized+controlled+trial[pt])+OR+(controlled+clinical+trial[pt])+OR+(randomized[ti
ab]+OR+randomised[tiab])+OR+(placebo[tiab])+OR+(drug+therapy[sh])+OR+(randomly[ti
ab])+OR+(trial[tiab])+OR+(groups[tiab]))+NOT+(animals[mh]+NOT+humans[mh]) 

1 Glanville, J. M., Lefebvre, C., Miles, J. N. V., & Camosso-Stefinovic, J. (2006), How to identify randomized                                   
controlled trials in MEDLINE: ten years on. Journal of the Medical Library Association, 94(2), 130–136. 
2 The Cochrane highly sensitive search strategies for identifying randomized trials in PubMed. (Retrieved                           
March 2018), from Cochrane Work: ​http://work.cochrane.org/pubmed 
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Figure 22.  PubMiner Search Toolbar 

 

Results - Basic Display 

Once the search is completed a page of twenty results is presented to the user. E-utilities are 
employed again to retrieve article summaries for the first twenty results ids. Additionally, the 
PubMiner database is queried to retrieve any demographic table or sentence data that has been 
retrieved for each article id.  
 
A row is rendered for each result showing: 

● an arrow that expands the row to reveal additional information about the article, 
including demographic data from our database.  

● a checkbox that allows the user to select this row for export to a CSV file. 
● the article title 
● the article’s authors 
● demographic tags to give a quick visual indicator about what demographic data may be 

available for this article. Note: the exact nature of the tags has not been finalized yet. 
Figure 20 shows an early model where we presented age, gender and race information. 
The final tags will likely be much broader, e.g. “Table 1 data available”. 

 

 

Figure 23. PubMiner Result Row - Normal 
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Results - Expanded Display 

The user may click on  the row’s arrow to display expanded information about the article, 
including information that has been pulled from the table and sentence mining database. The 
expansion area includes: 

● the article’s publication date 
● a link to the article in PubMed 
● a link to the article in PubMed Central, if available 
● an accordion control that can be expanded to show demographic details 

 

 

Figure 24. PubMiner Result Row - Expanded 

 
The details accordion can be expanded to show three sections that may contain demographic                           
data.  The article abstract section displays the abstract as retrieved from the PubMed database. 
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Figure 24a. PubMiner Result Row - Accordion - Article Abstract 

 
The middle section of the accordion shows demographic sentences that have been mined from                           
the article’s full text. The section where the sentence appeared is shown and highlighted. 

 

Figure 24b. PubMiner Result Row - Accordion - Demographic Sentences 
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The bottom section of the accordion displays excerpts from the article’s table 1, if one was                               
found.  Only sections determined to contain demographic data are included in the table excerpt. 
 

 

Figure 24c. PubMiner Result Row - Accordion - Table 1 

 

User Interface Design 

PatternFly ​(​http://www.patternfly.org/​) 
 
PubMiner takes advantage of the PatternFly library of visual design elements.  PatternFly is built 
using Bootstrap styles and provides a rich library of ready-to-use design elements. The 
PubMiner user interface uses the "List View With Expanding Rows" pattern to display results 
returned from the data service. 

Pug ​(​https://github.com/pugjs/pug​) 
 
Pages and page segments are rendered using the Pug template engine. Visual elements are 
designed using Pug templates. The Pug rendering engine converts the templates and data into 
html on the back end, and the html is delivered to the browser for rendering.  While it takes 
some time to get used to the Pug syntax, it makes certain tasks, like rendering repetitive 
elements, much easier. 
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2. Testing the Results 
 

We performed both unit and integration testing on each of the components of the PubMiner 
system, including unit and integration testing on the web application, and testing on the table 
and sentence mining processes as well as integration testing on the data pipeline as a whole. 

Process to Construct the Article Database 

Testing of AWS Lambda functions  

The AWS lambda functions integrate a small subset of the extensive Python code and functions 
which have been used in the data discovery and wrangling stages of the project, and which have 
been tested during that work with canned XML and HTML input files. The AWS Lambda 
functions are short and contain no classes. For example, the process of narrowing search 
results down to the subset of target articles depends (only) on several functions in Python that 
have been integrated in a single Lambda function, and which have been used extensively in the 
development work. The Python code for this particular Lambda function is, including comments, 
less than 150 lines.  
 
The testing of the AWS Lambda functions proceeded in three ways. AWS Lambda has a built-in 
“Test” feature which allows testing of trigger events, and visualizing the output of the function 
from test data in the event. The test data can be constructed in order to test the full functionality 
of the code (see Appendix for results). Second, print statements were extensively used to 
ensure that the output of the Lambda functions was producing both the desired output for the 
function and the required stream or trigger information for subsequent Lambda functions. For 
the latter, the AWS CloudWatch logs were used to tailor the event information output from the 
functions. Third, canned XML and HTML input files were used to trigger the entire process, and 
the CloudWatch logs, as well as the resulting database records were inspected to ensure 
correct process flow and output. 

Sentence Mining 

This component of the project is written in Java and JUnit is used to test this component. We 
fed in a set of PMC articles to assert that our program produces the expected results. The set of 
PMC articles and demographic sentences came from another tool, robotreviewer.net, which 
does population annotations of randomized clinical trial articles. The test result consistently 
shows that our tool discovers the correct demographic sentences and does a better job than 
robotreviewer.net. 
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Table Mining 
 

The table truncation process depends on Python functions with sequential parsing with regular 
expressions using lxml and BeautifulSoup, and these functions were tested using the 
BeautifulSoup testing classes that are provided at ​crummy.com​ , which have been created by 
one of the main contributors of BeautifulSoup to test the package (see Appendix for results).  In 
addition, we used about two dozen canned XML and HTML input files with various table formats 
and containing the terms to test: (1) the construction of trees and the fetching of tags; (2) the 
regular expression rules; (3) proximity rules for determining siblings; and (4) the truncation 
results. For example, the order and position in the table of key terms such as “gender” or 
“hispanic” was varied in the table included in the input XML file. 
 
The resulting truncated tables were inspected to ensure that the logic in the extraction of table 
elements conformed to our customer’s requirements to keep only the table structure (including 
the headings) and demographic information on age, sex and race/ethnicity. A example set of 
1000 tables was visually inspected in the process of honing and testing the regular expression 
syntax used in the parsing. Our customer also provided spot checking feedback on the results 
of the truncation. Two especially tricky aspects were tables with heading information in the 
<tbody> HTML element and tables with age groups (numeric with months, years, etc.) as 
subrows.   

Web Application 

The web application’s software is architected in a manner that maximizes the use of purely 
functional operations. For example, if the application combines the results of several different 
API calls into a single result through a series of transformations, all transformations are written 
as pure functions, which are then composed with the required API calls. This approach made it 
possible to achieve a high-level of code coverage using traditional, dependency-less unit testing, 
done using the Mocha testing framework. 
 
Some code components necessarily have to interact with external services. For example, some 
components orchestrate calls to NCBI’s e-utils or Amazon’s DynamoDB. These components 
were unit tested using an HTTP mocking library called nock. The nock NodeJS library allows 
HTTP calls to be mocked at the network layer which allows the code forgo using dependency 
injection. Instead, nock can be instructructed to verify the structure of an HTTP call and return a 
mock response. This library helped verify that our service produces correct calls to external 
services. 
 
Cypress.io was used for integration testing of the web application and user interface. Cypress.io 
is a testing tool that simulates user interaction with the application by running a testing process 
in a web browser that accesses a locally running instance of the application. It is able to 
simulate typical user scenarios against a running service and verify pages are rendered as 
expected. This tool is used to cover PubMiner’s core user flows. 
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Finally, Travis CI was used to automate the application’s build and run its test suite for every pull 
request and merge into the repository. The automated build process was also used to lint the 
codebase using JSHint and run a code coverage tool called ​codecov​ to generate coverage 
reports. This provided additional confidence for code changes that were integrated into the 
codebase. 

3. Development Process & Lessons Learned 

Meeting the Requirements 

After experiencing initial difficulties with the requirements, adjustments were made to reflect 
discoveries about the structure of article data. These adjustments were made largely the week 
leading up to milestone 2, which had a pronounced effect on the status of milestone 2 
deliverables.  
 
After the requirements were changed to a more reasonable and possible set, progress was 
made at a much quicker pace. While there were difficulties early on, all of the new requirements 
were satisfied by milestone 3. 
 
Below are the restated milestone 2 and 3 deliverables labeled with their associated status as of 
milestone 3. 
 
 
 

Milestone 2 Deliverables 

Deliverable  M2 Status  M3 Status 

Data has been collected and 
cleaned to reasonable 
standards for later extraction. 

Complete  Complete 

Demographic data has been 
extracted from articles where 
the data is readily available 
from a standardized Table 1. 

Behind Schedule  Complete 

Sentences containing 
demographic data has been 
extracted from articles. 

On Schedule  Complete 

A database and the  Complete  Complete 

55 

http://codecov.io/


associated data models have 
been set up. 

Demographic data from 
existing articles is stored in 
the database. 

Behind Schedule  Complete 

A web application with 
various pages and a basic 
user interface has been set 
up 

Complete  Complete 

 
 

Milestone 3 Deliverables 

Deliverable  M2 Status  M3 Status 

Web application implements 
filtering on demographic 
features, including age, 
gender, and race. 

In Backlog  Complete 

Users are able to export 
search results to a .csv 
format. 

In Backlog  Complete 

Investigate how to construct 
a training set for further 
machine learning techniques 
to extend the ability to extract 
demographic information 
from articles. 

Complete  Complete 

Curate that training dataset 
and explore several models 
to test where our solution 
works.  

Complete  Complete 

Test our methods against an 
established test dataset, 
such as the i2b2 NLP 
Research Dataset. 

In Backlog  Complete 
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Resource Estimates 

 
The logic to determine the resource availability, and thus the requirement delivery schedule for 
milestones 2 and 3 were originally the following: 
 
Time Assumptions 

● 5 weeks for Milestone 2  
● 4 weeks for Milestone 3  
● Target 12.5hrs/person/week  

 
Time Estimates 

● Milestone 2 
○  5 weeks * 12.5 hours * 6 people = 375 man hour  

 
● Milestone 3  

○ 4 weeks * 12.5 hours * 6 people = 300 man hours 
 
While the goal was to set a time budget of 12.5 hours per person per week, this was easily 
exceeded throughout most of the project’s timeline. This was largely due to the difficulties 
experienced early on in the project in understanding the customer’s requirements and changing 
them to be more reasonable. 

Risks 

 
Risks of the PubMiner system are categorized into one of two groups: internal and external: 

Internal Risks: 

● The evaluation criteria for the system may be difficult to define and not concrete. 
Therefore there is a risk that the users cannot determine if the solution provides 
value-added for their problem. This was manifested as user testing by the customers in 
which the team received feedback. 

● Extraction of data from this quantity of full-text articles may prove to be more 
computationally intensive than we expect.  While this remains a risk, leveraging AWS 
products gives the team the flexibility to adjust computational resources as needed. 

 
External Risks:  

● PubMiner will rely on existing PubMed search APIs for search capabilities. As such, a 
risk to the system is the deprecation of these APIs and the reliability of PubMed itself. 
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● On May 1, 2018, NCBI will begin enforcing the use of API keys that will offer enhanced 
levels of supported access to the E-utilities. After that date, any site (IP address) posting 
more than 3 requests per second to the E-utilities without an API key will receive an error 
message. 

Team Dynamic 

 
Due to the nature of the project and the complex subject matter with which no team member 
had prior experience, there were many meetings, both internal and with the customers. This was 
in an attempt to bring clarity to the requirements and especially to try to understand the 
customer’s current workflow and needs. 
 
This tendency to meet frequently and for long hours continued as the originally accepted 
requirements turned out to be based on a few key false assumptions about the presence and 
structure of data in PubMed articles. The focus shifted away from discussion geared towards 
understanding the requirements and shifted towards trying to overcome significant technical 
hurdles. 
 
The team was split into two groups with three allocated to research and work on the table and 
text mining aspects. That is, these three were assigned to prepare the enhanced data that the 
project relies on. The other three teammates were allocated to work on the user interface, 
middleware, and database aspects of the project, all of which would consume the data the first 
group would produce. 
 

Lessons Learned 

Validate unknowns and identify potential blockers as early possible 

The single greatest challenge of this project was wading through PubMed’s Open-Access 
articles in excruciating detail as we attempted to harvest information from them. We relied 
heavily on EBSCO’s input during the initial formation of requirements and in obtaining an 
understanding of what content might be easily extracted from the PubMed Open-Access 
articles. It was suggested that every Randomized Controlled Trial would contain a Table 1 with a 
standardized presentation of demographic data. Based on this assumption, the team started to 
formulate a design for the system and divide responsibilities. However, as we reviewed more of 
the data, we encountered more and more varieties of representing Table 1 demographic 
information: Table 1s that were PDFs or images, RCTs without a Table 1 or for which the 
demographic data would not be found in any table at all, or the fact that Table 1 could assume 
any of dozens of different formats. Indeed, after extensive review there seemed to be no 
standard format to Table 1 at all.  
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These realizations came slowly and were hard won: each case had to be encountered, manually 
reviewed, documented, and, at least initially, accounted for in our table mining process. The 
table "mining" code seemed more like table "discovery" code. It was only after a few weeks that 
the full complexity of the problem became clear and we realized we would have to abandon our 
initial ambition of providing fine-grained demographic filters on the set of Open-Access articles. 
In retrospect, we should have recognized that the major aspect of the project’s deliverables 
based on the original requirements relied on an unvalidated assumption: namely, that the Table 
1 data could be readily extracted and parsed into fine-grained demographic data. Having to do it 
all over again, we would have time-boxed an effort to validate our initial set of assumptions and 
changed course in the project much sooner.  
 

Domain-specific knowledge is crucial for data science projects 

Starting any project, like PubMiner, that involves data science, requires diving into the data. Data 
availability, scale, and complexity are the key considerations. You do not ever know the full 
extent of these consideration before diving into the data. However, often domain-specific 
knowledge can be crucial to quickly discover the main facets of these considerations. Due to 
our lack of this knowledge, our team had to build cognition quickly, primarily in three areas. 
 
First, we had to learn about the data, such as how to distinguish between articles, in particular 
RCTs as opposed to other articles, the key elements of the article structure, and 
what-was-available-where. Second, as none of us had ever used PubMed, we did not have 
experience with the linked databases or background in the necessary search techniques for 
medical terms  (e.g. MeSH terms) and the PubMed eutils API. Third, we were not aware of how 
important the scale (e.g. GBytes) and complexity of the data would be in implementing a text 
mining solution.   
 
The lesson learned is that everything takes time: especially the data discovery, and the research 
on the techniques applicable to the data science problem.  For the text mining component of the 
project, we started by looking at using graph databases, then turned to table mining techniques 
on Table1 and POS tagging, and then finally to machine learning methods for document 
classification of RCTs. We underestimated the potential depth of each of these areas. We found 
that a body of researchers have been working on each problem for years. As a result, we spent a 
great amount of time researching methods, and manipulating the data. The key takeaway is 
that, sometimes, lurking under what may appear to be straightforward problems, there are 
interesting, but enormous, complexities. 
 

Thoughtfully evaluate whether to turn a prototype into a production application 

While prototypes can be great for initial proofs of concept or demonstrating some functionality 
to customers very quickly, one should critically evaluate whether it is appropriate to convert 

59 



such prototypes into production applications. Often, prototypes dispense with a number of 
important software engineering practices like security, proper logging, modular design, and 
testability. It turns out that adding these into a working prototype can be quite problematic. In 
our case, we went through several round of refactoring to bring our prototype’s code quality up 
and get it to a place where it could be easily unit tested. Given the opportunity to take a different 
approach, we would opt to scrap the prototype and write the service from scratch, with a proper 
design. 
 

Gauge progress early and often and adhere to a schedule 

In the initial stages of the project the team focused heavily on implementing the requirements 
as they were originally specified. As previously discussed, this posed extensive difficulties as 
the requirements were set based on false assumptions but the team nonetheless continued to 
in our attempts. This was partly based on the belief that the requirements as originally specified 
were the ideal solution for the customer and that failure to meet this requirement would mean 
failure for the project as a whole. However, this turned out to be untrue; upon discussion with 
the customers there was quick agreement that the original requirement could be changed while 
still providing value and meeting the customer’s needs in a different way. In effect, it was far 
more important to provide a useful product rather than to meet the exact requirements that 
were agreed on. While the requirements provide a solid foundation upon which the project was 
built, in the end providing a working solution was the ultimate goal. 
 
Rather than reacting to the strained and difficult progress, the team spent weeks trying to 
develop the product as originally envisioned, with only modest success. A few days before the 
second project milestone, the team met with the course instructor, and subsequently with the 
customer. The team and instructor developed a new set of goals that the customer approved. 
Going forward, the team had a clear direction and rapidly made progress on the revised goals. 
The time spent in weekly brainstorming meetings dropped dramatically. While the initial 
difficulties encountered by the team may not have been foreseeable or preventable, the project 
would have gone smoother had the team asked for help a couple weeks earlier. 
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4. Appendix 

Screenshots 

 

 

Figure 25. PubMiner landing page, showing date of most recent update and count of articles included                               
in the update. 
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Figure 26. PubMiner result page showing a set of returned articles 
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Figure 27. PubMiner result page showing an expanded row 

 

Final User Stories 

System Installation Manual 

There are two general components to the PubMiner system: the web application and the data 
pipeline. The web application is stored in a github repository that can be cloned from 
https://github.com/CS599-MEDLINE/pubminer-web-app​. Instructions for setting up and running 
the web application are found both in the README of the repository and the Developer 
Installation Manual section, below. 
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Backend services on AWS:  DynamoDB, S3 buckets, and AWS Lambda setup 

The backend elements are running on AWS using the services AWS Lambda, DynamoDB, IAM, 
S3, EC2, Cloud Formation and CloudWatch. The installation and configuration of the DynamoDB 
tables and the S3 buckets has been performed with the boto3 library in Python 3.6. The IAM 
roles and policies, the AWS Lambda functions and the associated event triggers are created 
with a AWS Cloud Formation template. The entire backend can be installed from scratch using 
Python and boto3, first creating the database tables and S3 buckets (or using the ones in place, 
as “​pubmedcentral_oa”​ is about 40 GB) and then launching the Cloud Formation template with 
boto3. Every step is provided with instructions in a Jupyter notebook setup.ipynb. 
 
Currently all of the AWS services are running from a single account, and the AWS IAM service 
has been used to configure access for all team members, through a user Group and Role 
permissions. While the aspects of access management for our customer are out of scope for 
the project, a similar Group/Role approach can be taken after handover. The relevant sections of 
the Cloud Formation template would need adjusting for the Region and AccountID references. 

DynamoDB databases 

The DynamoDB tables “​demographics​” and “​demographics_meta​”  are created with just the 
primary key elements, and throughput capacities. The remaining attributes are created 
populated by the Lambda functions. The tables are created in setup.ipynb using boto3. There 
are also a full set of maintenance functions in the Jupyter notebook create_table.ipynb (batch 
populate, inquiring about the tables, database queries, updating, deleting items, etc.). 

S3 buckets 

The S3 bucket “​pubmedcentral_oa​” holds all of the XML files for the Open Access articles which 
are the sources of information in the database (these are .nxml files). The S3 bucket 
"​pubminer_upload​" contains the configuration files, such as the Cloud Formation template, the 
Sentence Miner application jar file, and the source packages for the AWS Lambda functions. 
Both of these S3 buckets are created using boto3 (in setup.ipynb).  

AWS Lambda functions and AWS Cloud Formation 

The Lambda functions can be setup using the an AWS Cloud Formation template. The template, 
as well as the Lambda function packages are created using Python 3.6 in the Jupyter notebook 
setup.ipynb. The notebook is used to create (and adjust if necessary) the .py files for the 
Lambda functions and can then be used to upload them to S3. Similarly, the Cloud Formation 
template is created and uploaded to S3 from the notebook, and then the Cloud Formation stack 
is launched using boto3.  
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Each Lambda function is described in a dedicated section, along with the trigger events, and the 
example ARN for the running platform. A brief overview of the Lambda functions follows: 
 

● “​GetPMCUpdatesFromCSV​” does the search, intersection of PMIDs and PMCIDs for the 
Open Access subset, and the initial population of items in the demographics and 
demographics_meta tables.  

● “​DownloadPMC-OAFileToS3​” does the download of files from PMC-OA and the upload to 
S3.  

● “​TruncateTable​” does the table truncation. The AWS Lambda package includes the 
BeautifulSoup4 and lxml packages, which are not included by default on Lambda.  

● The sentence extraction is performed on an EC2 instance, which is launched with a 
“user-data” script to perform the installation of the packages and necessary .jar file to 
run. The file “​SentenceMinerOnEC2Instance​” does these steps.  

● The function "​UpdateStatsInDemographicsMeta​" does a final update to the 
demographics_meta dynamodb table with the statistics of the latest update to the 
demographics table 

Roles and Policies 

Three AWS Roles are created from within the Cloud Formation template, along with their 
associated AWS Policy documents. They are: 

●  The role “​PM_lambda-dynamo-execution-role​” which is for the Lambda functions which 
poll the dynamodb streams, and which write to the dynamodb tables and S3.  

● The role “​PM_lambda_start_stop_ec2​” which is for the sentence extraction Lambda 
function to poll the dynamodb stream, launch the EC2 instance, as well as write to the 
dynamodb tables and S3.  

● The role "​PM_lambda_dynamodb_S3_role​" is for the other Lambda functions which do 
not require permission to invoke functions or launch instances, but require permissions 
to write to Dynamodb or to Put to or Get from S3 buckets. 

The Policy documents are included in the Role creation template, as inline Policies. 

Testing the installation 

The file setup.ipynb contains the JSON code for the test events of the individual Lambda 
functions. In addition, the set of BeautifulSoup tests can be run from the notebook to confirm 
that the table mining functions are working as expected.   

Note for Full Installation 

It should be noted that if the entire backend needs to be installed from scratch, the 
demographics table can be populated, if necessary, for the entire set of PMCIDs, using the 
Python function (since an AWS Lambda function GrabUpdatesPMCfromCSV.py of such 
magnitude would time out). Once the primary key items for “pmcid” are populated, the rest of 
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the backend will automatically generate from the sequence of Lambda functions, triggered 
initially from the stream for the demographics dynamodb table. 
 
 

 

Figure 28. Setup of backend application in AWS - setup.ipynb 
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Developer Installation Manual 

The following is a guide to building and deploying the web application. 

Running PubMiner Locally 

Install Required Software and Tool​s 

● Install Node.js® and npm (node package manager). The installer at ​nodejs.org will                       
handle both of those for you 

● Install Bower globally ​npm install -g bower 
● Install the gulp command line tools globally ​npm install -g gulp-cli 

Install and Build Application Dependencies 

● Clone the source code repository from 
https://github.com/CS599-MEDLINE/pubminer-web-app​:  ​git clone <url> <project 
directory name> 

● Ensure you are in the project directory 
● Run ​npm install​ to install the server-side dependencies (express, pug, xml-simple, etc.) 
● Run ​bower install​ to install client-side dependencies (PatternFly, jQuery) 
● Run ​gulp​ ​to build pmstyles.css and automatically have it copied to the public/css folder 

Start the Application 

● Ensure you are in the project directory 
● Run ​npm start​ to start the server on port 8081 

○ If you'd like to change the port to something different, you can modify the 
bin\www file 

○ To start in development mode, run ​npm run start-dev​ instead. In development 
mode, source changes are detected and the server automatically restarts. Also, 
the browser developer tools will display a Node.js icon that will allow you to 
debug server side code 

● In your browser, navigate to ​http://localhost:8081 

Running PubMiner in the Cloud 

Setup 

● Create a new virtual machine for the application on the cloud provider of choice (e.g. 
AWS, Digital Ocean). Details vary by provider. 
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● Connect to a terminal window for the virtual machine. 
● Follow the steps "Required Software and Tools" and "Install and Build Application 

Dependencies" above. 
● Install Forever globally ​npm install -g forever​. Forever will start an application and 

automatically restart an application that has crashed. 

Start the Application 

● Connect to a terminal window for the virtual machine. 
● Start the application using Forever: ​forever start ./bin/www 
● View the details using: forever list. This will show the uid, log file location, and uptime​. 

Update the Running Code 

● Connect to a terminal window for the virtual machine. 
● Find the uid assigned to the application: forever list 
● Stop the application: ​forever stop <uid> 
● Switch to the project directory 
● Refresh the source code from GitHub: ​git pull origin master 
● Install any new dependencies: ​npm install 
● Generate the .css: ​gulp 
● Start the application: ​forever start ./bin/www 

Additional Information 

Running Integration Tests with Cypress 

● Ensure the application and database are running 
● Run ​npm run cypress:open 
● Select search_spec.js or home spec.js from the Integration Test list. The tests should 

automatically start executing 

Running Unit Tests with Mocha 

● Ensure the application and database are running 
● Run ​npm run test 
● Results are logged to the console 

PubMed API key 

The app will recognize a PubMed API key stored as configuration value. The PubMed API key 
should be put in local.json on the deployed machine under the config folder. The example below 
shows how to provide the API key for the application to use in service calls. 
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<root>/config/local.json 
 

{ 
  "PubMedService": { 
    "queryOptions": { 
      "api_key": "<your-api-key-here>" 
    } 
  } 
} 
 

The project's .gitignore file is configured to not permit check-in of local.json. 

Building pmstyles.css 

PatternFly uses ​Less​ to compile PatternFly and Bootstrap style elements and project-specific 
styles into a single .css file. The project file less\pmstyles.less describes how the target css file 
is assembled, and is the place to add additional PubMiner-specific styles. 

The project uses ​gulp​ to compile the Less script. To build pmstyles.css, install the gulp 
command line tools globally ​npm install -g gulp-cli​. You may also need to run ​npm 
install​ within the project folder to update the project-specific dependencies (like gulp, 
gulp-less and gulp-plumber). Once the dependencies are installed, you simply run ​gulp​ in the 
project folder to build pmstyles.css and automatically copy it to the \public\css folder. 
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Automated Test Reports 

 

Figure 29. Mocha Unit Test Results 
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Figure 30a. Cypress Integration Test Results - Home Page 

 

 

Figure 30b. Cypress Integration Test Results - Search Results Page 

 

71 



 

 

Figure 31. Results from BeautifulSoup tests (from crummy.com) of Table Mining 

 
 

 

Figure 32a. Test of AWS Lambda function to Get Updates from PMC with cron-job trigger 
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Figure 32b. Test of AWS Lambda function for putting OA file to S3 with a DynamoDB trigger 

Figure 32c. Test of AWS Lambda function for Table Mining with S3 file upload trigger 
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Figure 32d. Test of AWS Lambda function for Sentence Miner with a DynamoDB trigger 
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